The coverage of this text includes mechanisms and machines, basic concepts; motion in machinery; velocity and acceleration analysis of mechanisms; design and analysis of cams, gears, and drive trains; static and dynamic force analysis; synthesis; and an introduction to robotic manipulators. Practical applications are considered throughout the text. Example problems and homework problems involve engineering design and provide a basis for design courses to follow. Analytical and graphical vector methods are illustrated, as well as complex number methods.
The text illustrates the use of motion simulation software, mathematics software, and user-written programs to solve problem and to present the results in plotted or tabulated form.
There are also many problems that can be solved by "hand calculations," however, using only a scientific calculator and/or simple drafting tools. The latter group may be useful as short practice problems and examination problems when laptop computers are unavailable.
The text was updated throughout. A few of the changes and additions include:
Charles E. Wilson is a Professor with the Department of Mechanical Engineering, New Jersey Institute of Technology. He received the B.S. and M.S. degrees in mechanical engineering from the Newark College of Engineering, the M.S. in engineering mechanics from New York University, and the Ph.D. degree in mechanical engineering from Brooklyn Polytechnic Institute. He is a licensed professional engineer, and has been awarded fellowships by the National Aeronautics and Space Administration, Department of Energy and National Science Foundation.
Dr. Wilson has published papers in a number of journals and transactions. Textbooks he has authored and co-authored are widely used in the United States and Canada. English language versions are also published in Britain, Taiwan, India, and the Philippines, and translations are published in Korea and Mexico.
Dr. Wilson served as a U.S. Air Force electronics and armament officer, and as an engineer and consultant for a number of companies. He is often called on to investigate functional and design problems in vehicles, machinery, and consumer products. He has investigated and given expert testimony on auto, truck, bus, and ambulance accidents, and accidents involving elevators, hydraulic presses, welds, playground equipment, garden equipment, and truck-mounted machinery.
J. Peter Sadler is a Professor with the Department of Mechanical Engineering, University of Kentucky. He has previously held faculty positions at the State University of New York at Buffalo and the University of North Dakota. He received the B.S.M.E, M.S.M.E., and Ph.D. degrees from Rensselaer Polytechnic Institute.
Dr. Sadler is a registered professional engineer and a member of many technical societies. He served as Editor for dynamics for the Journal of Mechanism and Machine Theory and Associate Editor of the Journal of Applied Mechanics and Robotics.
Dr. Sadler holds a U.S. patent related to predicting optimum machining coditions. His industrial projects and research include kinematics and dynamics, robotics, computer aided design, engineering optimization, and "lean" manufacturing.
This book includes planar and spatial kinematic and dynamic analysis of mechanisms in a computer implementation aspect. The book also includes concepts and numerical methods used in kinematics and dynamics, a reader with some fundamental knowledge in programming like MATLAB, kinematics and dynamics could get acquainted with the book easily and develop multibody dynamics code.